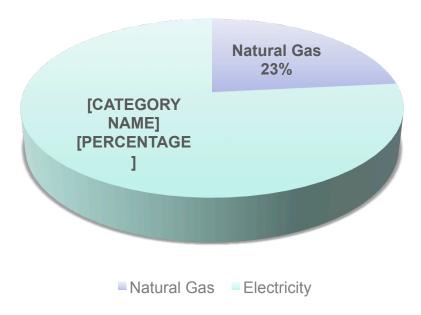
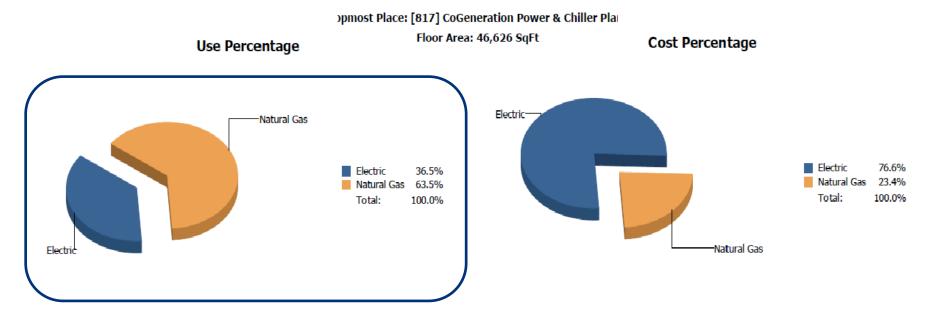
Energy Efficiency Assessment

Texas State University

EDF Climate Corps 2016

Milad M.Korde




Texas State University

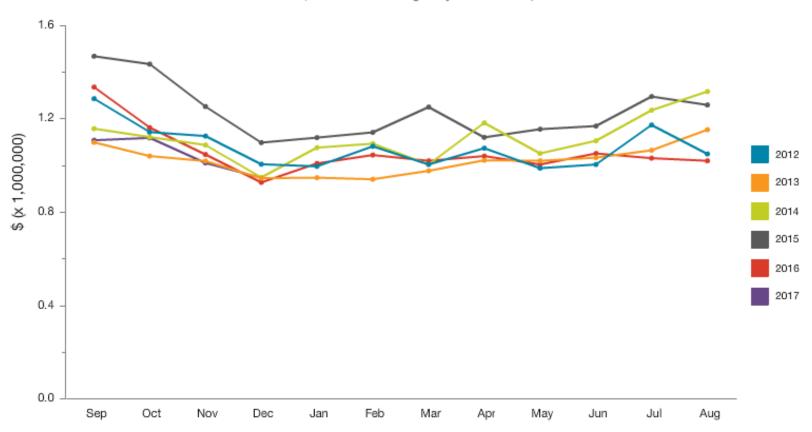
- ❖ 266 buildings:7.7 million gross square feet.
- ❖ 13 of these buildings consume more than 80 million kWh of electricity.
- ❖ This is equivalent of 7,334 single-family home (EIA).

Energy Cost at Texas State University

Source: EnergyCap application, readings for April 2015 to April 2016

Billing Period between Apr 2015 and Apr 2016

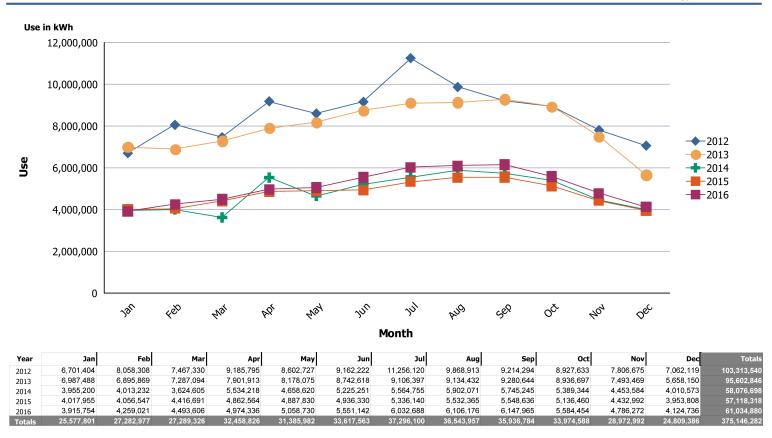
Commodity	Common l	Jnit	Ener	gy Use	Energy	Cost	Cost
	Common Use	Cost/Unit	MMBtu	Cost/MMBtu	Percentage		Percentage
Electric	62,269,842kWh	\$0.0826 / kWh	212,527	\$24.2156 / MMBtu	36%	\$5,146,463.39	76.59%
Natural Gas	359,554MCF	\$4.3749 / MCF	370,340	\$4.2475 / MMBtu	64%	\$1,573,014.78	23.41%
Grand Totals:			582,867			\$6,719,478.17	


The Energy Challenge at Texas State University

- Senate bill 898: mandates a goal to reduce electrical consumption throughout the university by at least 5% each year for 10 years, beginning September 1, 2011.
- Texas State Plan 2012-2017: goal 5.13: ensure regulatory compliance, environmentally responsible and sustainable practices and the efficient use of energy and water resources.

Location: Dashboard

Time: 02/02/2017 12:05:29 PM Created By: milad kordeh


Cost Trend (FY ends in Aug of year shown)

CoGeneration Center kWh consumption

Texas State University

Executive Energy Profile BL - 14

02/02/2017 12:18:10PM Page 1 of 2

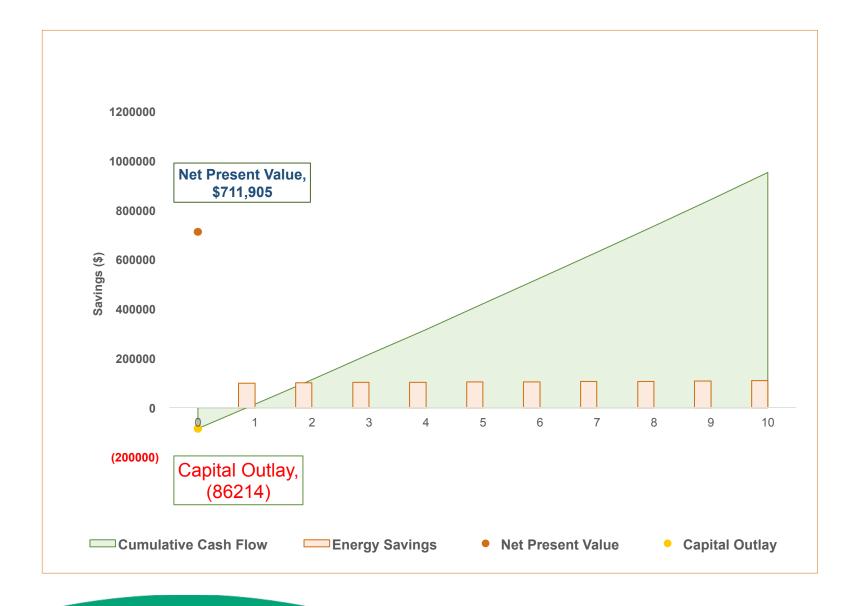
Electric Consumption Savings							
	Gross Square Feet (GSF)	Consumption (Kwh)	Consumption Per Sqft (kWh)				
FY12	7,102,422	121,184,231	17.062				
FY13	7,493,405	118,753,429	15.848				
FY14	7,513,016	120,167,425	15.995				
FY15	7,763,457	116,461,145	15.001				
2016?	7,719,991	116,468,027	15.087				

2012 – 2015: Increasing GSF and decreasing consumption

EUI= Energy utilization / Square Foot

https://goo.gl/QezY95

(Discounted) Cash Flow Model, Financial Metrics

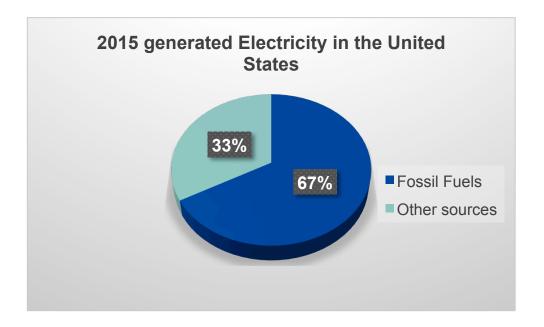

Investment-operating Cash flow
$$CF = CF \downarrow 1 / (1 + r) \uparrow 1 + CF \downarrow 2 / (1 + r) \uparrow 2 + ... CF \downarrow n / (1 + r) \uparrow n$$

> The value of all future cash flows

Net Present Value (NPV):

Higher value = More profit, value 0 = No gain, no lose

 $NPV(i,N) = \sum t = 0 \uparrow n \equiv Rt(CF) / (1+i(r)) \uparrow t$ —initial investment


> NPV alternatives:

- Payback period
- ➤ IRR→ Same formula as NPV→ Neutral NPV
- > Annual cost savings
- CO2 calculation

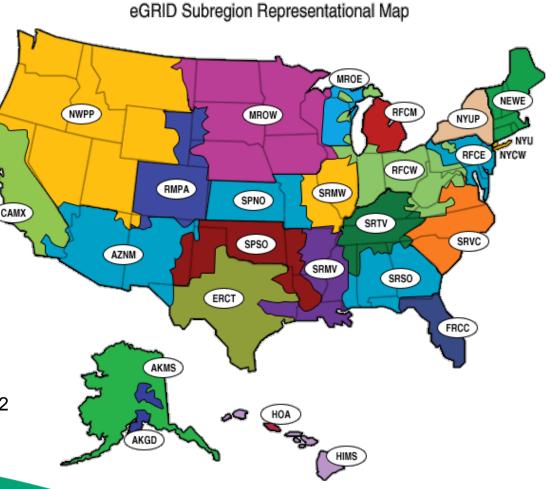
How to calculate CO2?

In 2015, the United States **generated** about 4 trillion kilowatt-hours of **electricity**.

Source: EIA

Scope 2: Indirect GHG emissions from consumption of purchased electricity, heat or steam.

Two sets of emissions:


Market Based

Location Based

What is eGRID?

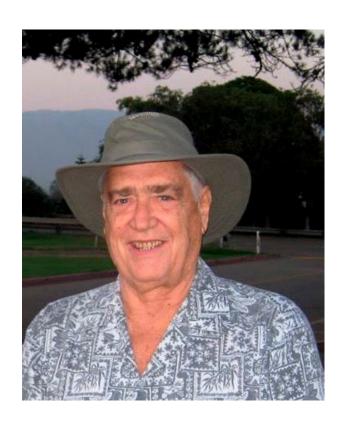
The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive inventory of environmental attributes of electric power systems.

Emission Factor
7.03 × 10⁻⁴ metric tons CO₂ / kWh
(eGRID, U.S. annual non-baseload
CO₂ output emission rate, year 2012
data)

How do I calculate scope 2 emissions?

Scope 2 = Activity x Emission **Emissions Data**

Factor


MWh

mt CO2e/ **MWh**

Why Saving Energy?

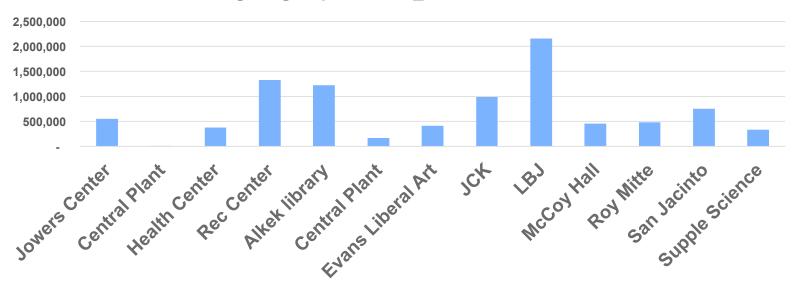
Tobler's first law of geography: "everything is related to everything else, but near things are more related than distant things."

- Cost
- Carbon Footprint
- Unstable Fuel Price
- Spending in other Projects
- Climate Change
- Water Pollution
- Economy Improvement
- Quality of Life
- Security
- End of Fossil Fuel Era

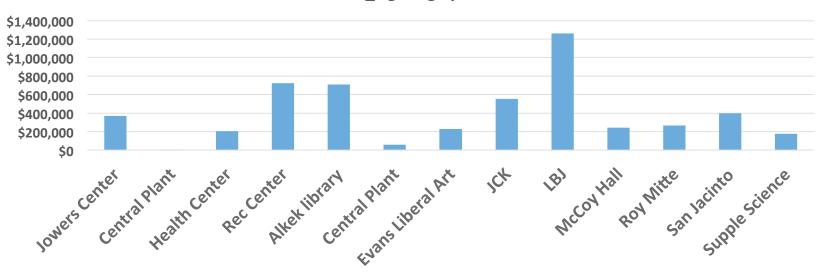
Replacement of Lighting System

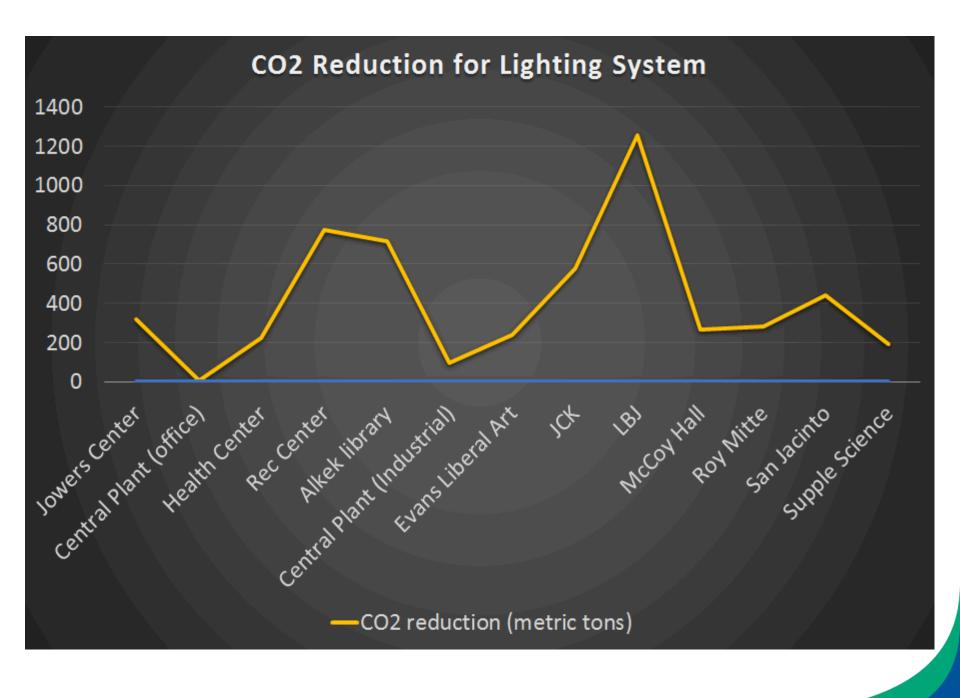
Linear fluorescent T8 bulb with 32 Watts of electricity consumption

- Longer Life
- High lumens with low Watt
- Falling price in the past years: \$2.50 now and \$25 not long ago



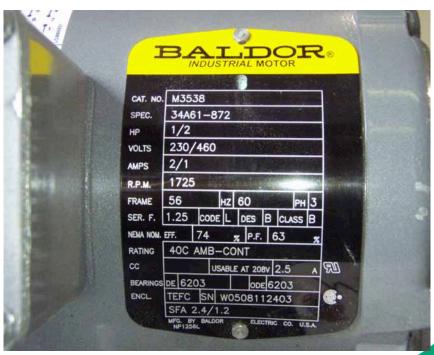
Replacement of Lighting System


Project Details


Project	NPV	Upfront Investment	Annual \$ Savings	Annual kWh savings	Annual Metric Tons of CO2 reduced	Payback (yrs)
Lighting Replacement	\$5,201,425	\$1,916,199	\$739,776	9,247,195	5,387	1.19

Lighting Replacement_Annual kWh saved

NPV_Lighting System

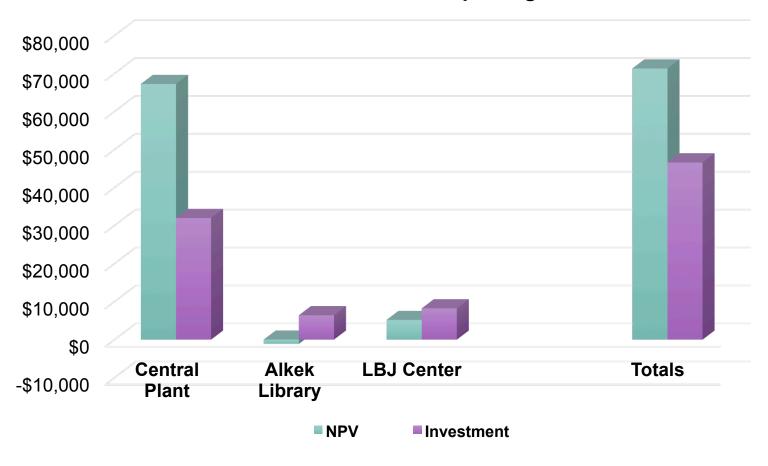


Replacement of Motors

Basic Project Information

The majority of motors installed around the Texas State University campus exceed 90 percent of the National Electrical Manufacturers Association (NEMA) nominal efficiency at full-load capacity, which means a reasonably good performance.

- ❖ 5.56 years of average payback
- Rewinding, repairing or replacing?
- ❖ Factors? lamination, stator...
- High duty cycle
- Possibility of a Motor Management Plan? Available history of each motor
- ❖ VFD



Replacement of Motors

Project Details

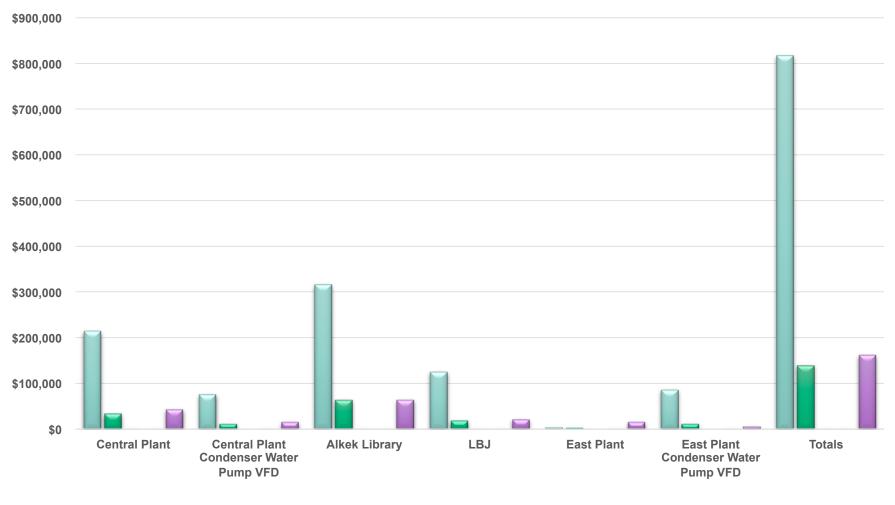
Project	NPV	Upfront Investment	Annual \$ Savings	Annual kWh savings	Annual Metric Tons of CO2 reduced	Payback (yrs)
Replacement of Motors	\$71,320	\$46,616	\$15,153	189,407	111	5.56

NPV and Investment for Replacing Motors

Variable Frequency Drive Installation

Basic Project Information

One of the best ways to meet energy efficiency measures is to apply variable frequency drives on the motors with constant speed induction. The output flow in case of fans and pumps changes in accordance with seasonal change and hours of operation of the buildings.



VFD Installation

Project Details

Project	NPV	Upfront Investment	Annual \$ Savings	Annual kWh savings	Annual Metric Tons of CO2 reduced	Payback (yrs)
VFD Installation	\$816,867	\$161,750	\$138,519	1,732,733	831	1.95

VFD

■NPV ■ Annual Cost Savings ■ Investment

Pump Replacement

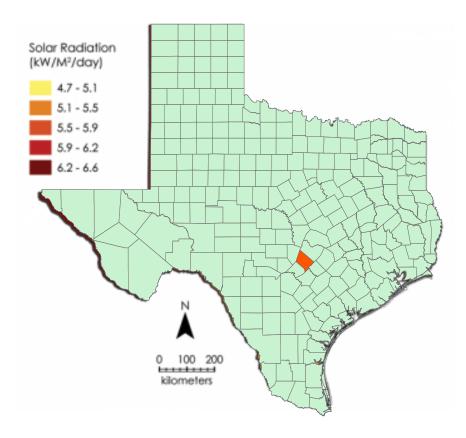
Basic Project Information

According to the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), regardless of the fact that pumps have been under a scheduled maintenance plan, they are at the end of their lifespan of 15 to 20 years. Using more efficient pumps during the replacement process will be an important step in reducing energy consumption.

Pump Replacement

Project Details

Project	NPV	Upfront Investment	Annual \$ Savings	Annual kWh savings	Annual Metric Tons of CO2 reduced	Payback (yrs)
Pump Replacement	\$2,529,808	\$115,300	\$337,655	4,220,693	2,459	0.99


Name of the Building	Annual kWh saved	NPV	Annual Cost Savings	CO2 reduction (metric tons)	Payback (year)	Investment
Central Plant	3,053,871	\$1,808,995	\$244,309.68	1779.00	0.32	\$77,500
Alkek Library	1,020,055	\$656,192	\$81,604	594.00	0.08	\$7,000
LBJ Center	146,767	\$64,621	\$11,741	86.00	2.58	\$30,800
Totals	4,220,693	\$2,529,808	\$337,655	2459.00	2.98	\$115,300

Solar Panels Installation

The average cost of electricity purchased from the local utility is **\$0.08** per kWh.

➤ How much it will cost in case of self production?

- No rebate
- Municipal utility
- Long payback
- Largest investment
- Largest and most effective CO2 reduction

Solar Panel Installation

Project Details

Project	NPV	Upfront Investment	Annual \$ Savings	Annual kWh savings	Annual Metric Tons of CO2 reduced	Payback (yrs)
Solar Panel Installation	\$1,495,143	\$7,434,000	-	-	2,926	8.5

Results: Total Potential Impact for Texas State University

Total Energy Savings

Total Investment	\$12,173,865
Annual kWh Savings	15,391,436
NPV	\$13,217,848
CO2 emissions avoided:	12,561 metric tons

1,231,314

Significant Emission Reduction 12,561

This is equivalent to:

- > 2,653 cars on the road each year
- > 30,104,391 miles driven
- ➤ 1,413,413 gallons of gasoline consumed
- 100 acres of U.S forests preserved

Next Steps for Texas State University

Recommended Next Steps

Texas State University should consider projects that offer a quick payback, have a low initial investment, or high net present value. These projects are most likely to meet approval and implementation without disrupting existing budgetary considerations.

- **♦**Pumps
- **&**Lighting
- **❖**Motors
- *****VFD

Recommended Next Steps

Action Plan & Timeline

Medium term (6 months-2 year) implementation

- Pump Replacement
- Lighting System Replacement
- Variable Frequency Drive
- Motor Replacement
- Condensate Recovery

Long term (3 – 5 years) implementation

On-Site Solar Panels Installation

Milad Mohammadalizadehkorde milad.kordeh@gmail.com m_m785@txstate.edu

https://drive.google.com/file/d/0B2hyHg1lMHN1dkJfLV9iVGxIV0k/view?usp=sharing

Project Overview

